December 2022

The Hunt for Novel Therapeutics Through Antibody Engineering

2023-01-27T12:50:33-05:00December 2nd, 2022|Articles|

Written by: Genya Gorshtein, MSc Published: November 1, 2022 Contents Introduction Approaches for Engineering Antibody Therapeutics Driving Antibody Engineering with Next Generation Protein Sequencing and Proteomics Introduction Antibody engineering encompasses various development, production strategies, and modification techniques to improve the biological properties of monoclonal antibodies (mAbs) [...]

October 2022

September 2022

Antibody Drug Conjugates as Anti-Cancer Therapeutics

2023-01-27T13:34:44-05:00September 19th, 2022|Articles|

Written by: Genya Gorshtein, MSc Published: September 14, 2022 Contents Introduction ADCs as Novel Anti-Cancer Chemotherapeutics Key Components of ADCs Future Generation of ADCs De Novo Protein Sequencing Applications in ADC Development Introduction An antibody-drug conjugate (ADC) is a monoclonal antibody (mAb) with a covalently attached [...]

Characterizing Fragile Protein Complexes

2022-10-26T14:01:04-04:00September 14th, 2022|Webinars|

Webinar Highlights You will learn: Introduction to the structure and function of the tuberous sclerosis protein complex (pTSC) A novel strategy for isolating and purifying protein complexes from native sources using recombinantly produced Fabs How Next Generation Protein Sequencing (NGPS) works Applications of NGPS to aid design and engineering of recombinant antibody [...]

August 2022

What Generates Antibody Diversity?

2023-01-27T12:30:28-05:00August 31st, 2022|Articles|

Written by Genya Gorshtein, MSc Updated: January 27, 2023 (Published: August 31, 2022) Contents How is Antibody Diversity Generated? Which Steps Contribute to the Generation of Antibody Diversity? Antibody Loci and V(D)J Recombination Somatic Hypermutation Class Switch Recombination De Novo Proteomic Sequencing of Antibodies How is Antibody [...]

Structure and Function of Antibodies

2022-12-22T16:15:44-05:00August 10th, 2022|Articles|

Written by Genya Gorshtein, MSc August 10, 2022 Contents General Structure of Antibodies Fab and Fc Fragments Hinge Region CDR and FR Regions Antibody Structure Analysis Services General Structure of Antibodies Antibodies or immunoglobulins (Ig) maintain a common quaternary structure consisting of two identical heavy chains (HCs) and two [...]

Moving Towards Biosimilar Drugs

2023-01-27T12:31:09-05:00August 4th, 2022|Articles|

Written by: Vanessa Yoon Calvelo, PhD Published: August 3, 2022 Contents What are Biosimilar Drugs? Why are Biosimilars Being Developed? Biosimilars are not the Equivalent of Generics Biosimilar Development Biosimilar Monoclonal Antibodies De Novo Protein Sequencing Solutions in Biosimilar Development What are Biosimilar Drugs? Biosimilar drugs, [...]

July 2022

June 2022

Why do Post-Translational Modifications Matter?

2023-01-26T16:16:33-05:00June 14th, 2022|Articles|

Written by: Vanessa Yoon Calvelo, PhD Updated: January 19, 2023 (Published: June 2, 2022) Contents What are post-translational modifications (PTMs)? Impact of PTMs Types of PTMs PTMs increase microheterogeneity of antibodies Characterization of PTMs by next generation protein sequencing The Importance of Post-Translational Modifications (PTMs) Post-translational [...]

Protein Structure and How to Study It

2023-01-26T17:07:32-05:00June 10th, 2022|Articles|

Written by: Yuning Wang, PhD Updated: January 26, 2023(Published: June 3, 2022) Contents Introduction The Four Levels of Protein Structure How are Protein Structures Studied? Introduction Structural information provides a great deal of understanding of how a protein works, which can allow us to elucidate molecular [...]

April 2022

Broadly Neutralizing Antibody Cocktails Targeting Nipah Virus and Hendra Virus Fusion Glycoproteins

2022-10-05T14:14:55-04:00April 29th, 2022|Case Studies|

Hendra virus (HeV) and Nipah virus (NiV) are types of Henipaviruses (HNVs) that originated in bats and can infect the human respiratory system with detrimental consequences. As enveloped, single-stranded RNA viruses, HeV and NiV use attachment (G) and fusion (F) glycoproteins on the envelope membrane to enter host cells. So far, there are no approved therapeutics or vaccines to combat the viruses in humans.

Identifying CDRs by Antibody Sequencing

2023-01-26T21:13:24-05:00April 1st, 2022|Articles|

Written by: Yuning Wang, PhD Updated: January 26, 2023 (Published: March 15, 2022) Contents What are CDRs? Antibody CDRs De Novo Protein Sequencing as a Tool for Identifying CDRs Sequences Applying De Novo Protein Sequencing to Identify CDRs Sequences Annotation Schemes for Identifying CDRs by Sequence Rapid Novor can Help with [...]

March 2022

February 2022

Camelid Antibodies and Nanobodies

2023-01-26T16:07:18-05:00February 4th, 2022|Articles|

Written by: Yuning Wang, PhD Updated: January 18, 2023 (Published: January 21, 2022) Contents Discovery of Camelid Antibodies What are Camelid Antibodies? Structure of Camelid Antibodies and Nanobodies Advantages of Camelid Antibodies and Nanobodies Camelid Antibodies and Nanobodies for Therapeutic and Research Applications How are Camelid Antibodies [...]

January 2022

December 2021

Next Generation Protein Sequencing in Veterinary Medicine and Industry

2023-01-03T10:32:09-05:00December 3rd, 2021|Whitepapers|

Since 2006, the One Health Initiative (OHI)’s goal has been to demonstrate the inextricable link between humans, animals, and the environment. Certainly, the current global pandemic is a great testament to the ties between climate change, humans, and animals that OHI has been working to highlight. The rise of other zoonotic diseases (e.g., Hendra, and Nipah viruses) not only directly affect humans through disease transmission but may also result in deep impacts to the food supply

November 2021

October 2021

Ushering the New Era in Anti-Drug Antibody Assays with Next Generation Protein Sequencing

2022-04-18T20:15:18-04:00October 15th, 2021|Whitepapers|

Anti-drug antibody (ADA) assays are critical to assess the clinical efficacy and safety of a biological drug and rely on control reagents that mimic the ADA response to the biological drug being tested. These positive controls typically consist of animal-derived pooled polyclonal antibodies or human monoclonal antibody reference panels against the target protein drug.

September 2021

Structure of an Amino Acid

2022-11-17T16:02:45-05:00September 14th, 2021|Articles|

Amino acids are small organic molecules that make up peptides and proteins. All living organisms share the same set of amino acids. Amino acids come together in different orders (sequences) to form proteins. As such, each type of protein has a different three-dimensional structure and biological activity.

Why is Protein Sequencing Useful?

2023-01-03T10:34:09-05:00September 3rd, 2021|Articles|

Protein sequencing is a method that typically utilizes mass spectrometry (MS) to determine the amino acid code of a protein1. Prior to the development of mass spectrometry, Edman degradation, a method involving the stepwise degradation of peptides to derive the order of amino acids, was the mainstream approach. Nowadays, mass spectrometry is favored due to its ease of use and high throughput capabilities, though Edman degradation is still employed for specific applications in which the technique is well suited.

August 2021

What are Monoclonal Antibodies?

2022-08-17T16:55:40-04:00August 25th, 2021|Articles|

Monoclonal antibodies (mAbs) are homogenous antibodies that bind to a single epitope on an antigen. Kohler and Milstein generated the first mAbs when they developed hybridoma technology in the 1970s. Because of the specificity, homogeneity and unlimited availability, mAbs are valuable reagents used in a variety of important applications including treatment and diagnosis of diseases

How to Determine Peptide Sequences

2022-04-25T18:38:14-04:00August 17th, 2021|Articles|

Amino acids (aa)—the building blocks of proteins—are simple molecules characterized by a variable R group flanked either side by an amino group and a carboxyl group. With around 20 different commonly found amino acids, each one can bond with another to produce chains that can be classified as peptides (typically below 50 aa) and proteins (sequences above 50 aa)—molecules ubiquitous to every known organism.

Key Pain Points in Amino Acid Sequencing & How to Avoid Them

2023-01-03T10:26:58-05:00August 13th, 2021|Articles|

Amino acid sequencing is commonly performed using Edman degradation or mass spectrometry (MS). While mass spectrometry is favoured for its high throughput capabilities and ease of use, both techniques possess their own features and limitations. This article summarizes some of the key pain points inherent in the two methodologies when determining the amino acid sequence.

De Novo Protein Sequencing vs DNA Sequencing

2022-08-17T18:18:59-04:00August 1st, 2021|Articles|

Written by Yuning Wang, PhD August 1, 2021 What is DNA Sequencing? DNA sequencing is the process of determining the precise order of four nucleotides bases—adenine (A), guanine (G), cytosine (C), and thymine (T)—that make up the DNA molecule. From Sanger sequencing to next-generation sequencing (NGS), DNA sequencing’s accessibility and ease [...]

July 2021

What is the De Novo Amino Acid Sequencing Method?

2022-04-25T20:09:41-04:00July 19th, 2021|Articles|

Proteins are composed of peptide chains, which in turn are made up of a string or linear sequence of amino acids (Figure 1A). Every amino acid has a basic structure containing an amino (-NH2) group and a carboxylic (-COOH) group (Figure 1B). To form a peptide, amino acids link to each other via a peptide bond, which involves the reaction between the carboxylic group of one amino acid and the amine group of another amino acid (Figure 1B). As such, the primary structure of a protein is typically recorded starting at the amino-terminal (N) end and continuing to the carboxyl-terminal (C) end. The primary protein structure may be directly sequenced from a sample of the protein itself or inferred from the DNA sequence.

What is Protein Mass Spectrometry?

2022-04-25T15:22:40-04:00July 18th, 2021|Articles|

Protein mass spectrometry refers to the use of mass spectrometry in the study and characterization of proteins, including their quantification, profiling, interaction mapping, and identification of their post-translational modifications (1,2). Protein mass spectrometry may also be referred to as mass spectrometry-based proteomics. Mass spectrometry-based proteomics consist of three approaches: top-down, middle-down, and bottom-up proteomics

How Do You Obtain the Sequence of an Antibody?

2023-01-26T20:54:06-05:00July 10th, 2021|Articles|

Antibody sequences are critical for antibody engineering and protein characterization in therapeutic development. For antibody reagent users, knowing the sequences allows them to perform sequence analysis/alignment to identify binding and cross-reactivity so they can conduct rational experiment design.

Isoleucine and Leucine

2022-03-23T10:16:31-04:00July 7th, 2021|Articles|

Because they share the same mass, isoleucine and leucine are known as isobaric amino acids. Conventional mass spectrometry-based proteomics cannot be easily used to distinguish between isoleucine and leucine.

What is Amino Acid Sequencing?

2022-04-25T18:09:02-04:00July 5th, 2021|Articles|

Amino acid sequencing is the process of identifying the arrangement of amino acids in proteins and peptides. Numerous distinct amino acids have been discovered in nature but all proteins in the human body are comprised of just twenty different types.

June 2021

Bispecific Therapeutics Explained

2022-04-25T18:18:31-04:00June 28th, 2021|Articles|

Bispecific therapeutics are monoclonal antibodies that carry a specific antigen-binding capability on each arm. Bispecifics are thus capable of having two specificities that can either double the binding affinity of the antibody toward the same antigen (increased avidity), or can now bind to two targets. Bispecifics are most often described as two types: trispecifics and bispecific T-cell engaged antibodies (BiTE).

Major Antibody Databases and Their Applications

2022-04-25T19:04:14-04:00June 18th, 2021|Articles|

Written by María Gerpe, PhD June 18, 2021 Introduction Research publications represent an additional source of validation proof for commercially available antibodies. As such, academic and industry scientists often also rely on publication references to decide which commercial antibody to purchase. Several independent efforts exist to compile such information. For instance, [...]

May 2021

April 2021

March 2021

The Underlying Cause of Medical Diagnostic Invalidation

2021-11-23T09:41:41-05:00March 23rd, 2021|Whitepapers|

In-vitro diagnostics (IVDs) are one of the most commonly used tools to diagnose conditions and guide treatment decisions and are often considered the “silent champion” of healthcare. They work by detecting the absence or presence of particular markers or by measuring the concentration of analytes or specific substances.

January 2021

November 2020

October 2020

September 2020

May 2020

August 2019

April 2019

February 2017

Antibody Protein Sequence Analysis Using Mass Spectrometry

2023-01-26T20:51:53-05:00February 3rd, 2017|Articles|

One of the most important pieces of information researchers need to know during early stage antibody drug research and development is the sequence information of the antibody protein. With the advancement of mass spectrometry instrumentation and technologies, it is helpful, and sometimes critical, to conduct sequence analysis using mass spectrometry experiments.

June 2016

Moving Towards Recombinant Monoclonal Antibodies

2021-12-14T18:06:16-05:00June 30th, 2016|Articles|

Recombinant Monoclonal Antibodies (rAbs) are highly reproducible, customizable and pure alternatives to the traditional antibodies produced by hybridomas. Get the antibody protein sequence, either by DNA sequencing or the de novo protein sequencing technology, you can rest assured that you can have the exact antibody made recombinantly anytime in the future.