First Immunoassay for Measuring Isoaspartate in Human Serum Albumin
To develop robust mAb biologics, it is vital to fully characterize the protein, including its primary sequence, mutations, and important post-translational modifications
To develop robust mAb biologics, it is vital to fully characterize the protein, including its primary sequence, mutations, and important post-translational modifications
To develop robust mAb biologics, it is vital to fully characterize the protein, including its primary sequence, mutations, and important post-translational modifications
Since 2006, the One Health Initiative (OHI)’s goal has been to demonstrate the inextricable link between humans, animals, and the environment. Certainly, the current global pandemic is a great testament to the ties between climate change, humans, and animals that OHI has been working to highlight. The rise of other zoonotic diseases (e.g., Hendra, and Nipah viruses) not only directly affect humans through disease transmission but may also result in deep impacts to the food supply
Anti-drug antibody (ADA) assays are critical to assess the clinical efficacy and safety of a biological drug and rely on control reagents that mimic the ADA response to the biological drug being tested. These positive controls typically consist of animal-derived pooled polyclonal antibodies or human monoclonal antibody reference panels against the target protein drug.
Proteins are composed of peptide chains, which in turn are made up of a string or linear sequence of amino acids (Figure 1A). Every amino acid has a basic structure containing an amino (-NH2) group and a carboxylic (-COOH) group (Figure 1B). To form a peptide, amino acids link to each other via a peptide bond, which involves the reaction between the carboxylic group of one amino acid and the amine group of another amino acid (Figure 1B). As such, the primary structure of a protein is typically recorded starting at the amino-terminal (N) end and continuing to the carboxyl-terminal (C) end. The primary protein structure may be directly sequenced from a sample of the protein itself or inferred from the DNA sequence.
The protein sequence is key to understanding the function of a protein target and is critical to therapeutic and diagnostic development. This is particularly important for antibodies whose code diversity and glycosylation impact both function, and stability.
In-vitro diagnostics (IVDs) are one of the most commonly used tools to diagnose conditions and guide treatment decisions and are often considered the “silent champion” of healthcare. They work by detecting the absence or presence of particular markers or by measuring the concentration of analytes or specific substances.