When Hybridomas Die: Recovering Critical Reagents with Antibody Sequencing
To develop robust mAb biologics, it is vital to fully characterize the protein, including its primary sequence, mutations, and important post-translational modifications
To develop robust mAb biologics, it is vital to fully characterize the protein, including its primary sequence, mutations, and important post-translational modifications
Written by: Genya Gorshtein, MSc Published: May 9, 2023 Contents Introduction Hybridoma Instability Leads to mAb Irreproducibility Batch-to-Batch Variation in Polyclonal Antibodies Antibody Sequencing and Recombinant Expression Ensures Reproducible Antibody Reagents Generating Reproducible Reagents with Rapid Novor Introduction Antibodies (Abs) are indispensable tools in [...]
DNA sequencing is the process of determining the precise order of four nucleotides bases—adenine (A), guanine (G), cytosine (C), and thymine (T)—that make up the DNA molecule. From Sanger sequencing to next-generation sequencing (NGS), DNA sequencing’s accessibility and ease of use make it one of the most widely used technologies in life sciences.
Antibodies are integral to life sciences research and therapeutic and diagnostics discovery and development. However, they are inherently prone to variability.
If you could have guaranteed stability, certainty, and reproducibility for your research, would you be interested? Imagine this, if you’re 2 years into your project and your freezer died along with all of your important cell lines, what would you do? This is just one of the situations covered in this webinar, along with many other solutions researchers have begun to implement to safeguard their efforts. Whether you’re looking to proceed with stability and certainty or you’re looking for an immediate solution for your current reproducibility challenges, protein sequencing may be the answer.